# Fuel System Reliability Pipeline Compressor Stations & Small Gas Turbines

Anthony J. Smalley
Southwest Research Institute
February 26, 2002

#### **Themes**

- Gas-Fired Power Plants and Pipelines: A Tightly Linked Gas Energy System
- Electric Power Reliability and Availability require:
  - Power Plant Equipment Reliability, as well as...
  - Reliability of Pipeline Gas Delivery
- Both Power and Pipeline Industries use Gas Turbines
- Gas Turbine RAM and Condition Monitoring Technologies Benefit both Industries and Contribute to U.S. Energy Reliability
- Pipelines Need New Compression Concepts

### Some Observable Trends in the U.S. Gas Energy System

- Growth in Gas Consumption:
  - From 22 TCF Now to 30 by 2015 or Sooner and...to 35 by 2020?
- Majority of Growth for GT Power Plants
- Nuclear and Coal still 1<sup>st</sup> Dispatched, so:
  - GT Power Plant Load is Variable

# Growth in Gas Consumption for Electric Power Projected Through 2015 (GRI)



### 500 MW GTCC Plant with Two GE Frame 7FAs



### 1998 Generation Capacity & Actual Generation (EIA)



#### Typical & Representative Power Plant Flow Variation Over 3 Weeks



#### Fuel Gas Conditioning includes Filter / Separators / Heaters / Compression



# Large GT Efficiency *vs.* Rotor Inlet Temperature (°F) OEM & DOE-ATS R&D



# Heat Rate *vs.* Compressor Discharge Pressure for Large CTs in Simple & Combined Cycle



## Compressor Discharge & Minimum Fuel Pressure (where known) for Large Combustion Turbines



#### Fuel Gas Lines to Turbines, Supplying Dry Gas, Whenever Needed, at CDP +200



### **Availability of Normalized Output of GT-Fleets - Power (from SPS-ORAP)**



### Potential Consequences of Inadequate Compression

 Result of Simulations by EVA, in "Pipelines to Power Lines Series" (sponsored by GRI/EPRI)...

#### Simulations show How Representative System Needs More Compression under Sustained High Demand



### Result with 7500 HP More Compression for Peaking



#### Re-stated, Expanded Trends

- Power System Gas Use Increasing
- GTCC Plants Need at Least Half Gas Growth
- GT Load Variable
- GT Power Market > 30X Mech. Drive Market
- Increasing CDP goes with Lower Heat Rate
- Turbine Inlet = CDP + 200 PSI
- Power Plant Load more Variable and Higher P
- Adequate Compression is Essential for Energy Reliability

#### Pipeline Gas Compression Infrastructure - An Essential Element of Energy Reliability

- About 12 GW (16 Million HP)
- Turbines 25% by Population; 45% by Power
- Mostly Old, but will not be Replaced Soon
- Median Pipeline Turbine (~8,000 HP) Larger than Recips, but Smaller than Power Plant Turbines)
- Impacted by Emissions Regulations (NOx/HAPS)
- Burns ~3% of the Gas Delivered to End User
- Cost of Power Dominates True Operational Cost

#### DOE Gas Infrastructure Program - Goals Relevant to Compression

- Increase Capacity 10% without Changing Infrastructure
- Improve Flexibility of System to Respond to Load Changes
- Decrease Air Emissions by 50% Per MMSCF by 2010
- Develop a Portfolio of Technologies to Reduce Costs:
  - Reduce Construction Costs >20% by 2005
  - Reduce O&M Costs 30% by 2005; 50% by 2010

# Distribution of HP for Gas Turbines in Gas Transmission Service (approx.)



# Pipeline Compression Cost as a Function of Fuel Gas Cost (PRCI) (based on 1994 records)



### For One Company - Regression of Station Fuel Gas *vs.* Station HP-Hrs. - R<sup>2</sup>=96.7; Slope=8.194 MCF/1000 HP-Hr. +/-0.15330



#### Pipeline Gas Turbines

- ~1100 Gas Turbines in Pipeline Service
- Average Company Fleet >100 Units
- Small Units: Median Power = 6 MW (8,000 HP)
- Significant No. >100,000 Hrs.; Some >300,000
- Mostly 2-Shaft Variable Speed Mech. Drive
- Transition to Digital Controls still Ongoing
- GT Overhauls Costliest Single Maintenance Item for Pipeline Operators
- Potential Condition Monitoring Concerns:
   Integrity; Performance; Hot Section Life

#### Estimated Overhaul Cost of Industrial Gas Turbines by Size (Based on Informal Estimates during Interviews; \$ = \$34,452 + \$61.81 HP)



#### Pipeline Condition Monitoring Practice

- Trending Periodic Data, e.g., Vibration and Temperature is increasingly Common, but
- Diagnostic/Prognostic Interpretation is Limited
- Performance Degradation Assessment Limited for Turbines and Centrifugal Compressors
- Life Management of Hot Section
   Components Essentially Non-Existent

#### Pipeline Condition Monitoring Practice – *cont'd*

- Digital Control Systems and MMI/HMIs provide New Opportunities
- GMRC, PRCI have Early Concept/Paper Studies
- DOE Recently Funded Programs for Large Power Generating Turbines have Potential for Beneficial Tech Transfer to Pipeline Application:
  - Coating Life Management
  - Prognostics and Diagnostics

# PRCI Program on "Engine/Compressor Performance Data Normalization (ECPDN)" Objective:

- To Enable Intelligent Interpretation of Compressor Station Digital Data, with:
  - Expected Values or Normalized Values based on Changing Conditions,
  - Alarms based on Significant Deviation from Expected Values, and
  - Operator Action Guidance.
- Turbine Parameters include: CDP; Gas Compressor Head and Efficiency; Filter Pressure Drop

### Fleet Monitoring Concept: Local Functional Architecture (GMRC)



# Fleet Monitoring Concept: Remote System Functional Architecture (GMRC)



### Anticipated New Compression: ~4.1 GW (5.5 Million HP) by 2015

- Engine Driven Recips
- Motor Driven Recips
- Gas Turbine Driven Centrifugals
- Motor Driven Centrifugals

#### Pipeline Gas Turbine Driver



### Pipeline Motor-Driven Centrifugal + Gearbox Speed Increaser



### Engine Driven Reciprocating Compressor Installation



### Motor Driven Reciprocating Compressor Installation



### Advanced Pipeline Compression Concept: The In-line Electric Motor Driven Compressor "IEMDC"





# IEMDC: Pipeline Efficiency Gain Via Illustrative 16.7% Increased Line-Pack



#### **IEMDC** Details of Construction



# Advanced Compression Concept: Sanderson Variable Stroke Concept



#### Summary

- Electric Power Reliability and Availability
   Need Adequate, Flexible, Reliable Pipeline
   Compression
- Gas Turbine RAM and Condition Monitoring Technologies Benefit both Industries and Contribute to U.S. Energy Reliability
- Pipelines Need New Compression
   Concepts
- DOE has an Important Role to Play